

Sioux Technologies

Why Julia?
14 February 2012 | Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman

In short, because we are greedy.
We are power Matlab users. Some of us are Lisp hackers. Some are Pythonistas, others Rubyists, still others Perl

hackers. There are those of us who used Mathematica before we could grow facial hair. There are those who still can't

grow facial hair. We've generated more R plots than any sane person should. C is our desert island programming

language.

We love all of these languages; they are wonderful and powerful. For the work we do — scientific computing, machine

learning, data mining, large-scale linear algebra, distributed and parallel computing — each one is perfect for some

aspects of the work and terrible for others. Each one is a trade-off.

We are greedy: we want more.

We want a language that's open source, with a liberal license. We want the speed of C with the dynamism of Ruby. We

want a language that's homoiconic, with true macros like Lisp, but with obvious, familiar mathematical notation like Matlab.

We want something as usable for general programming as Python, as easy for statistics as R, as natural for string

processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs together as the shell. Something

that is dirt simple to learn, yet keeps the most serious hackers happy. We want it interactive and we want it compiled.

(Did we mention it should be as fast as C?)

While we're being demanding, we want something that provides the distributed power of Hadoop — without the kilobytes

of boilerplate Java and XML; without being forced to sift through gigabytes of log files on hundreds of machines to find our

bugs. We want the power without the layers of impenetrable complexity. We want to write simple scalar loops that compile

down to tight machine code using just the registers on a single CPU. We want to write A*B and launch a thousand

computations on a thousand machines, calculating a vast matrix product together.

We never want to mention types when we don't feel like it. But when we need polymorphic functions, we want to use

generic programming to write an algorithm just once and apply it to an infinite lattice of types; we want to use multiple

dispatch to efficiently pick the best method for all of a function's arguments, from dozens of method definitions, providing

common functionality across drastically different types. Despite all this power, we want the language to be simple and

clean.

All this doesn't seem like too much to ask for, does it?

Even though we recognize that we are inexcusably greedy, we still want to have it all. About two and a half years ago, we

set out to create the language of our greed. It's not complete, but it's time for an initial[1] release — the language we've

created is called Julia. It already delivers on 90% of our ungracious demands, and now it needs the ungracious demands

of others to shape it further.

So, if you are also a greedy,
unreasonable, demanding
programmer, we want you to give it
a try.

3© Sioux Technologies | Confidential

https://julialang.org/blog/2012/02/why-we-created-julia/#fndef:1
https://julialang.org/

The Unreasonable
Effectiveness of
Mathematics
Algorithms everywhere

© Sioux

My grudge with modern C++

6© Sioux Technologies | Confidential

It’s verbose and does not look like math!

Multiple dispatch in C++

My grudge with Python

7© Sioux Technologies | Confidential

75x higher energy consumption!

My grudge with Python

8© Sioux Technologies | Confidential

Oh…and
It’s verbose and does not look like math!

75x higher energy consumption!

Julia = performance software looking like math

9© Sioux Technologies | Confidential

https://biaslab.github.io/RxInfer.jl/

This intro

Deepak Vincchi on Juliahub

Question round

Matthijs Cox and Keith Myerscough on
Julia in the Eindhoven practice

Chris Rackauckas on SciML

1

2

3

4

5

Program

10© Sioux Technologies | Confidential

Why Julia in High-Tech Industry?
Scientific Machine Learning

April, 2023

Scientific Machine Learning
Mixing Data and Models

Auto-Completing Models with Machine Learning

Universal Differential Equations

Let’s dive in a bit!
Standard Machine Learning: Learn the whole model

u’=NN(u) trained on 21 days of
data

Can fit, but not enough information
to accurately extrapolate

Does not have the correct
asymptotic behavior

More examples of this issue:

Ridderbusch et al. "Learning ODE Models with Qualitative
Structure Using Gaussian Processes."

Universal ODE

Replace
Unknown

Portion

Replace
Unknown

Portion

Infection rates: known
From disease quantities

Percentage of cases
known to be severe,
can be estimated

Exposure:
Unknown

Universal ODE -> Internal Sparse Regression

Sparse Identification on only the missing term:
I * 0.10234428543435758 + S/N * I * 0.11371750552005416 + (S/N) ^ 2 * I * 0.12635459799855597

Replace
Unknown

Portion

Replace
Unknown

Portion

Sparsity improves
generalizability!

Scientific Machine Learning: Improving Predictions with Less Data

Dandekar, R., Rackauckas, C., & Barbastathis, G. (2020). A machine
learning-aided global diagnostic and comparative tool to assess effect of
quarantine control in COVID-19 spread. Patterns, 1(9), 100145.

Accurate Model Extrapolation Mixing in Physical Knowledge

Automated discovery of geodesic
equations from LIGO black hole
data: run the code yourself!

https://github.com/Astroinformati
cs/ScientificMachineLearning/blob
/main/neuralode_gw.ipynb

Keith, B., Khadse, A., & Field, S. E. (2021). Learning orbital
dynamics of binary black hole systems from gravitational
wave measurements. Physical Review Research, 3(4),
043101.

Universal Differential Equations Build Earthquake-Safe Buildings

“Scientific Machine Learning
for Earthquake-Safe Buildings”

Structural identification with
physics-informed neural
ordinary differential equations.

Lai, Zhili, Mylonas, Charilaos,
Nagarajaiah, Staish, Chatzi,
Eleni

Universal Differential Equations Predict Chemical Processes

Santana, V. V., Costa, E., Rebello, C. M., Ribeiro,
A. M., Rackauckas, C., & Nogueira, I. B. (2023).
Efficient hybrid modeling and sorption model
discovery for non-linear
advection-diffusion-sorption systems: A
systematic scientific machine learning approach.
arXiv preprint arXiv:2303.13555.

Universal Differential Equations Generate More Accurate Models
of Battery Degradation

Researchers at CMU Used
Universal Differential Equations to
Improve Models of Battery
Degradation to Suggest Better
Batter Materials

“Universal Battery Performance
and Degradation Model for Electric
Aircraft”

Nills, Sripad, Fredericks,
Gutenberg, Charles, Frank,
Viswanathan

DeepNLME: Integrate neural networks into traditional NLME modeling
DeepNLME is SciML-enhanced modeling for clinical trials

• Automate the discovery of predictive
covariates and their relationship to
dynamics

• Automatically discover dynamical
models and assess the fit

• Incorporate big data sources, such as
genomics and images, as predictive
covariates

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data
(covariates)

Covariate
s

Structural Model
(pre)

Dynamic
s

Requires special fitting procedures (Pumas)

We have been using Pumas software for our
pharmacometric needs to support our development
decisions and regulatory submissions.
Pumas software has surpassed our expectations on its accuracy and ease of use. We are
encouraged by its capability of supporting different types of pharmacometric analyses within
one software. Pumas has emerged as our "go-to" tool for most of our analyses in recent
months. We also work with Pumas-AI on drug development consulting. We are impressed by
the quality and breadth of the experience of Pumas-AI scientists in collaborating with us on
modeling and simulation projects across our pipeline spanning investigational therapeutics
and vaccines at various stages of clinical development

Husain A. PhD (2020)
Director, Head of Clinical Pharmacology and Pharmacometrics,
Moderna Therapeutics, Inc

The Impact of Pumas (PharmacUtical Modeling And Simulation)

“ Built on SciML

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data
(covariates)

Covariate
s

Structural Model
(pre)

Dynamic
s

How can we find
these models?

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data
(covariates)

Covariate
s

Structural Model
(pre)

Dynamic
s

How can we find
these models?

Idea: Parameterize the model such that the models can
be neural networks, where the weights of the neural

networks are fixed effects!

Indirect learning of unknown functions!

DeepNLME in Practice: Data Mining for Predictive Covariates

Automate the discovery of covariate
models

• Train convolutional neural networks to
incorporate images as covariates

• Train transformer models to utilize natural
language processing on electronic health
records

• Utilize automated model discovery to
prune genomics data to find the predictive
subset

Utilize GPU acceleration for neural
networks

Currently being tested on clinical trial
data

DeepNLME: Automated Construction of Patient-Specific
Pharmacological Models for Individualized Dosing

Award by International Society of Pharmacometrics
Currently being tested in clinical trials!

Julia Computing Confidential

Scientific Machine Learning Gives More Realistic Results than Pure ML

Physically-Informed Machine Learning

Using knowledge of the physical forms as
part of the design of the neural networks.

New Architecture: DigitalEcho

Smoother, more accurate results

ln(x) ex

https://docs.google.com/file/d/1ohlgF8d0gGtRweNDvOqHKbTX2i9b37pe/preview

3D simulations are
high resolution but
too expensive.

Can we learn faster
models?

High fidelity surrogates of ocean columns for climate models

Ramadhan, Ali, John Marshall, Andre Souza,
Gregory LeClaire Wagner, Manvitha Ponnapati,
and Christopher Rackauckas. "Capturing
missing physics in climate model
parameterizations using neural differential
equations." arXiv preprint
arXiv:2010.12559 (2022).

Derive a 1D approximation to
the 3D model

Incorporate the “convective
adjustment”

Training against
datasets: only okay

Neural Networks Infused into Known Partial Differential Equations

Simulation + Machine Learning = Success

Integrating the
simulator into training!

SciML: A Pervasive Ecosystem of Well-Documented
Differentiable Packages

All are compatible with Neural Networks and Scientific Machine Learning

The SciML Common Interface for Julia Equation Solvers

LinearSolve.jl: Unified Linear Solver Interface

NonlinearSolve.jl: Unified Nonlinear Solver
Interface

DifferentialEquations.jl: Unified Interface for all
Differential Equations

Optimization.jl: Unified Optimization Interface

Integrals.jl: Unified Quadrature Interface

Unified Partial Differential Equation Interface

SciML Docs: Comprehensive Documentation of Differentiable
Simulation

Why is Julia leading
Scientific Machine Learning?

April, 2023

Productivity vs. Performance

DifferentialEquations.jl is generally:

• 50x faster than SciPy

• 50x faster than MATLAB

• 100x faster than R’s deSolve

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Foundation: Fast Differential
Equation Solvers

https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant
and feature-rich ecosystem for solving differential equations in julia." Journal
of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential
equation APIs for accelerated algorithm development and benchmarking."
Advances in Engineering Software 132 (2019): 1-6.

1. Speed
2. Stability
3. Stochasticity
4. Adjoints and Inference
5. Parallelism

Non-Stiff ODE: Rigid Body System

8 Stiff ODEs: HIRES Chemical Reaction Network

New Parallelized GPU ODE Parallelism: 20x-100x Faster than
Jax and PyTorch

Matches State of the Art on CUDA, but also
works with AMD, Intel, and Apple GPUs

Paper coming soon…

Understanding Julia’s Performance:
Why is a JIT on Python not enough?

Julia for Biologists (Nature Methods)

Understanding Julia’s Development Speed:
Why are Julia packages growing faster and better tested?

Julia Scientific Computing Julia Machine Learning Normal Python PyTorch

ODE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

SciPy.odeint

~5 developers

Torchdiffeq

1 contributor with more than
one contribution

SDE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A TorchSDE

2 contributors with more
than one contribution (last
commit July 2021)

DDE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A N/A

DAE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A N/A

Understanding Julia’s Development Speed:
Why are Julia packages growing faster and better tested?

Julia Scientific Computing Julia Machine Learning Normal Python PyTorch

ODE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

SciPy.odeint

~5 developers

Torchdiffeq

1 contributor with more than
one contribution

SDE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A TorchSDE

2 contributors with more
than one contribution (last
commit July 2021)

DDE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A N/A

DAE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A N/A

Understanding Julia’s Package Ecosystem:
Can Composability of Features be Automatic?

Understanding Julia’s Package Ecosystem:
Can Composability of Features be Automatic?

One Language: More Performance

Goal: Learn to predict patient behavior (dynamics) from simple data
(covariates)

Covariates

Structural Model
(pre)

Dynamics

Requires special fitting procedures (Pumas)

Julia is Building Tools for
High-Tech Enterprise

April, 2023

JuliaSim at a Glance

All in a point-and-click GUI

Generate Digital Twins
and calibrate models

Tune nonlinear controllers
Deploy to embedded hardware

Power of the Cloud: Point and Click GUI Doesn’t Sacrifice Performance

Mix surrogate generation with cloud compute:
Train surrogates in the time of 5-8 runs!

10/11/2022
Brad Carman

Catapult
Project

Instron Hydropuls Catapult Introduction

prediction
software

Model History: >10,000x over Simulink, and Beyond

2014

• I joined Instron

• Built Implicit Newton/Euler
Equation Based model in pure
Matlab with inverse and subset
model generator using
Symbolic Toolbox

• Increased model accuracy with
elimination of assumptions and
increased complexity

• Worked well, but…

• Slow

• Hard to update and
maintain

2000

• Inverse Model: Transfer
functions

• Forward Model: Simulink

2017

• Attempted to move to
SimScape

• Successfully transitioned
model with improved speed,
but required many
workarounds and hacks

• Never released…

2020

• Moved to Julia

• Developed EmbeddedJulia
library,
ModelingToolkitComponents.jl
and successfully transitioned
model to ModelingToolkit.jl

Matlab2CSharp and SimScape Manager

2.5kHz 10kHz

>1000x performance improvements
over Simulink!

The Julia implementation is 6x faster than Dymola for the full
cycle simulation.

● Dymola reference model: 35.3 s
● Julia (as close to) equivalent model: 5.8 s
● Could be due to details such as the linear solvers, the refrigerant

property libraries, etc. More benchmarking to come.

Using CTESNs as surrogates improves simulation times
between 10x-95x over the Julia baseline. Acceleration depends
on the size of the reservoir in the CTESN. The surrogate
approximates 20 of the observables.

Error is < 5% in all cases.

8,000 ODE Highly stiff
vapor-compression cycle
model

Total speedup over Dymola: 60-570x

Training set size Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

ARPA-E
 Accelerated Simulation of Building Energy Efficiency

NASA Launch Services:
Deploying Julia to Replace Simulink

Day long cluster compute analysis turned into an interactive webapp!
Youtube: Modeling Spacecraft Separation Dynamics in Julia - Jonathan Diegelman

US Air Force
Research
Laboratory

1. Robust Controls
2. Optimal control under

uncertainty
3. Deployment onto

embedded hardware
4. Nonlinear control of

unmanned vehicles
(UAVs / Drones)

JuliaSim Architecture

SciML Open Source Software
Organization
sciml.ai

● DifferentialEquations.jl: 2x-10x Sundials, Hairer, …
● DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
● ModelingToolkit.jl: 15,000x Simulink
● Catalyst.jl: >100x SimBiology, gillespy, Copasi
● DataDrivenDiffEq.jl: >10x pySindy
● NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
● NeuralOperators.jl: ~3x original papers (more optimizations

required)
● ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
● SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
● DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention…

If you work in SciML and think optimized and maintained
implementations of your method would be valuable, please let us know
and we can add it to the queue.

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter

Public

Sioux Hot or Not
ASML & Sioux & Eindhoven

Keith Myerscough & Matthijs Cox

April 21, 2023

CREATION DATE: YYYY-MM-DD

Public

April 21, 2023 Page 2

Matthijs CoxKeith Myerscough
Physicist & Metrology ArchitectMathware Designer

scientificcoder.com

Public

April 21, 2023 Page 3

www.meetup.com/

julialang-eindhoven

http://www.meetup.com/
http://www.meetup.com/

Public

Events

* Capacity limited!

Currently looking for new hosts!

Low cost, low key: high fun, high value!

April 21, 2023 Page 4

🗓 🎉 📍 🤩

Sep ’22 Embracing Change HTC 50

Nov ‘22 How to Julia TU/e 46

Jan ’23 Julia for Reals Sioux Labs 37

Feb ’23 Julia Bonus Meetup Philips Stadium 60*

May ‘23 ??? ??? >50

Public

Map of Julia Eindhoven area / contributors

Page 5

Public

Why Julia for ASML?

April 21, 2023 Page 6

Public

July 28, 2022 Page 7

ASML makes big systems for tiny patterns

Software and algorithms play a central role

to optimize the machines and processes

Public

Typical ASML Algorithm Development Experience

We have a proven algorithm prototype in research Then we spend years turning it into a product

July 28, 2022 Page 8

Not so excited customer

years later

Excited customer

Why does it take so long?

How can we accelerate?

Public

The Life of an Algorithm

July 28, 2022 Page 9

Test on data Prototype

Algorithm

Idea

Product

Code

Equipment

Application(s)

Public

The Life of an Algorithm

July 28, 2022 Page 10

Test on data Prototype

Algorithm

Idea

Product

Code

~1 year 2 - 4 years

Equipment

Application(s)

Public

The Life of an Algorithm

July 28, 2022 Page 11

Test on data Prototype

Algorithm

Idea

Product

Code

Equipment

Application(s)

Public

The Life of an Algorithm

July 28, 2022 Page 12

Test on data Prototype

Algorithm

Idea

Product

Code

Two language

problem

Equipment

Application(s)

Public

The Life of an Algorithm

July 28, 2022 Page 13

Test on data Prototype

Algorithm

Idea

Product

Code

Equipment

Application(s)

?

Public

Technology needs for our algorithms

June 15, 2022 Page 14

Prototype Production

Math

Public

Julia is designed for the challenge we have at ASML:
fast and easy numerical computing

April 21, 2023 Page 15

Great for Functionals All we need

Plots Linear Algebra

File IO Machine Learning

And much more; all open source!

Fast

See more: https://julialang.org/benchmarks/

100

101

102

R
u

n
ti
m

e
 r

e
la

ti
v
e

 t
o

 C

on a wide range of common code patterns

typed, compiled and general purpose

Great for Software

expressive and feels dynamic

Public

Julia progress at ASML

July 28, 2022 Page 16

2019 2020 2021 2022

Find business opportunity

Begin language PoC
Pilot project evaluations

Julians find each
other at ASML

?

Julia@ASML
Community

Host 5-day
bootcamps

Multiple local
teams and cases

Begin formal
structures

Language evaluation

Proven Julia integration
in many ASML software
platforms

Public

Our discovery of Julia’s unexpected benefits

Julia Package Management

Julia all the way down

C memory alignment makes life easier

Open-source Julia contributions turn you into a legend ☺

Julia’s deployment options are rapidly improving (with ASML funding)

April 21, 2023 Page 17

.jl

Public

April 21, 2023 Page 18

Public

Remember: The Life of an Algorithm

July 28, 2022 Page 19

Test on data Prototype

Algorithm

Idea

Product

Code

Two language

problem

Equipment

Application(s)

Public

July 28, 2022 Page 20

I want to

get stuff

done, fast

I want high

quality

code

I want to

understand

the domain

I want to code

better
I don’t want

to code

Only abstract

design patterns,

please

two language problem

==

two culture problem

scientists

software

developers

Public

July 28, 2022 Page 22

scientists

software

developers

Teach more than Julia!

git, TDD,

CI/CD

REPL, math,

science

?

Public

July 28, 2022 Page 23

scientists

software

developers

One big happy Gaussian!

Public

April 21, 2023 Page 24

We had a two language problem in ASML

We found a technical solution

We built an internal Julia ecosystem

We are solving the

two culture problem

Public

We make it together

Functional and software engineers work

together to build prototype algorithms

Software and functional engineers can

quickly deploy high quality algorithms

June 15, 2022 Page 25

Excited customer Happy customer

fast

Public

13

Show your hands!
Is Julia

~ HOT ~
or

~ NOT ~

	hon-julia
	Slide Number 1
	Slide Number 2
	Why Julia?�14 February 2012 | Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman �
	The Unreasonable Effectiveness of Mathematics
	My grudge with modern C++
	My grudge with Python
	My grudge with Python
	Julia = performance software looking like math
	Program

	Sioux Hot or Not Presentation
	Sioux Hot or Not_ASML
	hon-julia
	Slide Number 13
	Slide Number 14

