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Why Julia?

14 February 2012 | Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman

In short, because we are greedy.

We are power Matlab users. Some of us are Lisp hackers. Some are Pythonistas, others Rubyists, still others Perl
hackers. There are those of us who used Mathematica before we could grow facial hair. There are those who still can't
grow facial hair. We've generated more R plots than any sane person should. C is our desert island programming

language.

We love all of these languages; they are wonderful and powerful. For the work we do — scientific computing, machine
learning, data mining, large-scale linear algebra, distributed and parallel computing — each one is perfect for some

aspects of the work and terrible for others. Each one is a trade-off.
We are greedy: we want more.

We want a language that's open source, with a liberal license. We want the speed of C with the dynamism of Ruby. We
want a language that's homoiconic, with true macros like Lisp, but with obvious, familiar mathematical notation like Matlab.
We want something as usable for general programming as Python, as easy for statistics as R, as natural for string
processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs together as the shell. Something

that is dirt simple to learn, yet keeps the most serious hackers happy. We want it interactive and we want it compiled.
(Did we mention it should be as fast as C?)

While we're being demanding, we want something that provides the distributed power of Hadoop — without the kilobytes
of boilerplate Java and XML; without being forced to sift through gigabytes of log files on hundreds of machines to find our
bugs. We want the power without the layers of impenetrable complexity. We want to write simple scalar loops that compile

down to tight machine code using just the registers on a single CPU. We want to write A*B and launch a thousand

computations on a thousand machines, calculating a vast matrix product together.

We never want to mention types when we don't feel like it. But when we need polymorphic functions, we want to use
generic programming to write an algorithm just once and apply it to an infinite lattice of types; we want to use multiple
dispatch to efficiently pick the best method for all of a function's arguments, from dozens of method definitions, providing
common functionality across drastically different types. Despite all this power, we want the language to be simple and

clean.
All this doesn't seem like too much to ask for, does it?

Even though we recognize that we are inexcusably greedy, we still want to have it all. About two and a half years ago, we
set out to create the language of our greed. It's not complete, but it's time for an initialll release — the language we've
created is called Julia. It already delivers on 90% of our ungracious demands, and now it needs the ungracious demands

of others to shape it further.

So, if you are also a greedy,
unreasonable, demanding
programmer, we want you to give it

a try.
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https://julialang.org/blog/2012/02/why-we-created-julia/#fndef:1
https://julialang.org/
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My grudge with modern C++

template<class... Fs>
struct covariant : overload<Fs...>{
covariant(Fs... fs) : overload<Fs...>(fs...){}
. template<class... Ts, typename = decltype(overload<Fs.
decltype(auto) call(Ts&&... ts) const{
if constexpr(std::is_same<decltype(overload<Fs...>
i return overload<Fs...>::operator()(std::forwar
else
return overload<Fs...>::operator()(std: :forwar
}
template<

class... Variants,

class Ret = detail::variant_of_set_t<
detail::results_of_setn_t<

overload<Fs...> const&,

detail::variant_types_list_t<Variants>...

It's verbose and does not look like math! .

=
Ret operator()(Variants const&... vs){
return pivot([&](Cauto8&... es)->Ret{return call(es

b

Multiple dispatch in C++
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My grudge with Python

75x higher energy consumption!

© Sioux Technologies | Confidential 7
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Julia = performance software looking like math

pdel of the complete system dynamics
del function noisy_pendulum(n)

y = datavar(Float64, n)

x = randomvar(n)

T ~ Gamma(a = 1.0, B = 1.0)
X_0 ~ MvNormal(p = zeros(2), £ = diageye(2))

X_prev = x_0
for i in 1:n

x[i] ~ g(x-prev)

. y[i] ~ Normal(p = dot([1.0, 0.0], x[i]), v=T)
x_prev = x[i]

end

https://biaslab.github.io/RxInfer.jl/

end
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Why Julia in High-Tech Industry?
Scientific Machine Learning



Scientific Machine Learning
Mixing Data and Models

Data ’éw <Models
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Auto-Completing Models with Machine Learning

I Measurement Data
A B
20 F|— nati
— UDE Approximation - LTJPuEe ﬁ?g:gg?gzmn
8 I | @ Measurements 10 Known and Unknown Relations
g 0 T =ax+ U (0,x,y)
2 _10} y=—6y+Us(0,2,y)
6 _ 1
=20 | |'I‘min Model 0 = ming L (0) I
1
— 0 1 2 3 4 5 6 |Recover Unknowns
=) t ) )
Dk Z = min ||U(6, X) — OZ||2 + A||Z|I;
& c =
X o=, |S17Y
100'0 r o= L._,.r‘//}
S
05 |
27 LE = Build fully symbolic Model
‘_l\ll 1072 | T =ar+ &y
) § =61y + &y
10715 |
0 L
o 1 2 3 4 5 6 . ) . )
: - Universal Differential Equations
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Let’s dive in a bit!
Standard Machine Learning: Learn the whole model

¢
o)
@ TueExposed e
@ TueInfected ™
L 8 Pl el - u'=NN(u) trained on 21 days of
— Esh:mated Infected .. data
e Estimated Recovered PY
= Training Data End ..
L]
- o . . .
e o° Can fit, but not enough information
o to accurately extrapolate
(]
L]
@ .(
2y ...-'::..o-" Does not have the correct
[} ° ° .
M“.“ — asymptotic behavior
0®
0 i ) ' )
0 10 20 30 40 50 60 More examples of this issue:

Ridderbusch et al. "Learning ODE Models with Qualitative
Structure Using Gaussian Processes."
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Replace
Unknown

Portion

Replace
Unknown
Portion

Estimated vs Expected Exposure Term

25

20

15

@ Tue Exposure

Estmated Exposure

1500

1000

Exposure:
Unknown

o+ u | E,

vl — pR,
—pdN,
d vl — A\D,
olF,

Infection rates: known
From disease quantities

Percentage of cases
and known to be severe,
can be estimated

20

500

1500

1000

500

Neural ODE Extrapolation

@ Tue Exposed

@ Thue Infected

@ Tue Recovered
e Estimated Exposed
e Estimated Infected
e Estimated Recovered
m— Training Data End

Universal ODE Extrapolation

@ Tue Exposed

@ Tue Infected

@ Tue Recovered
Estmated Exposed
e Estimated Infected
e Estimated Recovered
= Training Data End

50

60

50

60



Universal ODE -> Internal Sparse Regression

Sparse Identification on only the missing term:

| ¥ 0.10234428543435758 + S/N * | * 0.11371750552005416 + (S/N) A 2 * | * 0.12635459799855597
Sparsity improves
generalizability!

/ Replace
S P Unknown @ Thue Exposed
T . @ e Infected
Portion @ Tue Recovered
1500 |- | == Estmated Exposed
Replace e Estimated Infected
/ s Estimated Recovered
E — Unkn9wn = Training Data End
Portion
1000 |~
I =
/
R o 500
/
N' = —:u’j 'y
/ e
D — d ’)/I — D y and 0 M

g = ok,
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Scientific Machine Learning: Improving Predictions with Less Data

QSIR prediction and forecasting: SIRHD data

Neural ODE prediction and forecasting: SIRHD data

QSIR prediction and voremsnng SIRHD data

QSIR prediction and forecasting: SIRHD data

0.5

B Data: Infected

: Rex 3 [ D Infected

 eiing iecred 100 |- | 0 Oata Recoverea ‘
e phetend, ”

= Forecast Forecast |

0.75 ‘ ‘ ‘
03
0.50 -
0.2 El Cl El ) Gl
. sasl (a) train = 30 days (b) train = 34 days
"I QSIR prediction and forecasting: SIRHD data QSIR prediction and forecasting: SIRHD data
sl ,....ull"""]“ 0.00 |- sl
> r o 20 40 60 80
Days since 500 infections Days since 500 infections
(a) (b)

QSIR prediction and forecasting: 9 compartment model dat: ~ Neural ODE prediction, forecasting: 9 compartment o sice 500 nectors * oo S0 mecions
| 5 Resered [ Te— (c) train = 38 days (d) train = 40 days
| — Training: Infected 0.8 |- | Data: Recovered

—— Training: Recovered Training: Infected

o paraagt Training: Recovered

Forecast
03 06
0.2 04 il
01 02
”I"”I" Dandekar, R., Rackauckas, C., & Barbastathis, G. (2020). A machine

00 oo 4 b "'""" learning-aided global diagnostic and comparative tool to assess effect of

o 20 49 &0 8 ° 20 40 60 80 quarantine control in COVID-19 spread. Patterns, 1(9), 100145.

Days since 500 infections
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Accurate Model Extrapolation Mixing in Physical Knowledge

Upon denoting x = (¢, x, p,€), we propose the follow-

ing lell}il_V of UDEs to describe the two-body relativistic Automated discovery of geodesic
RS equations from LIGO black hole
(1 + ecos(x))? data: run the code yourself!
= 1 + Fi(cos(x),p.e)), Ha
Mp3/2 ( 1(cos(x), p, )) (5a)
(1 + e cos(x))? https://github.com/Astroinformati
X= " (1+ Fa(cos(x)p€)),  (5b) cs/ScientificMachineLearning/blob
p = Fa(p, e) (5¢) /main/neuralode_gw.ipynb
é = Fu(p,e), (5d)
0.1 —— True waveform
— = Learned waveform
. Training data
g s & f AL g )
ELRRERRM U
= Y B !
Keith, B., Khadse, A., & Field, S. E. (2021). Learning orbital
dynamics of binary black hole systems from gravitational _o.1 L i
wave measurements. Physical Review Research, 3(4), | |
043101. 0 5-10% 1-10° 1.5.10°% 2.10° 2.5-10° 3-10°

Time
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Universal Differential Equations Build Earthquake-Safe Buildings

“Scientific Machine Learning
for Earthquake-Safe Buildings”
Structural identification with
ordinary differential equations.
Lai, Zhili, Mylonas, Charilaos,
Nagarajaiah, Staish, Chatzi,
Eleni

physics-informed neural




Universal Differential Equations Predict Chemical Processes

Langmuir isotherm - LDF

10 T T T
Neural Network 8
/ o FT THTAT
— /;Q\\\ b% Train data Test dat: P S R
Isotherm node e LIRS Uptake rate i
7 N Top
ci————%HC)—ET—><:k;:;<>*‘\ -O.. aq. 2 & =
' >) * e, O% A E
OO0 E.
q; \\\\ O ,':/ & IH H
AN ‘,
AN 1,
UDE prediction - Train _
O O  Observations - Train

UDE prediction - Test
Observations - Test

| | | I
120 160 200 240 280 320 360 400

Figure 2: Schematic representation of the proposed hybrid model.

Santana, V. V., Costa, E., Rebello, C. M., Ribeiro, time [min]
A. M., Rackauckas, C., & Nogueira, |. B. (2023).
Efficient hybrid modeling and sorption model (a)

discovery for non-linear
advection-diffusion-sorption systems: A
systematic scientific machine learning approach.
arXiv preprint arXiv:2303.13555.

80-JuliaHub

Langmuir isotherm - LDF



Universal Differential Equations Generate More Accurate Models
of Battery Degradation

4.5

Researchers at CMU Used S
4

Universal Differential Equations to o . /
Improve Models of Battery S 9.5 {
Degradation to Suggest Better = B ‘ * Baseline mission, cycle #1
Batter Materials i

2.5 | I I

_ 0 50 100 150
“Universal Battery Performance 45 Time (min)
and Degradation Model for Electric
Aircraft” e 4 “,\ /
&35 g pe——

Nills, Sripad, Fredericks, g 34 Baseline mission, cycle #800
Gutenberg, Charles, Frank, - [ CellFit
Viswanathan 0 50 100 150
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DeepNLME: Integrate neural networks into traditional NLME modeling

DeepNLME is SciML-enhanced modeling for clinical trials

Plasmatic
concentration

Mixed-effects modeling

Q
w
c
[=]
o
n
[]
o

Time

C

Response

/ Fixed effects

S————— Random effects

PD

Concentration
PK/ Pla)
i

Response

Residual variability
e Observations

> Meanftypical prediction

Interindividual variability

Time

Trends in Pharmacological Sciences

pumas °

« Automate the discovery of predictive
covariates and their relationship to
dynamics

» Automatically discover dynamical
models and assess the fit

*Incorporate big data sources, such as
genomics and images, as predictive
covariates



From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data
(covariates)

7 — | W
i Sex;, \ Requires special fitting procedures (Pumas)
Covariate Ka 6 e k1
S g; = CL| = 92<1$61 )0.75926%6771-’2’
V 93 eni,?) .
Structural Model
(pre)
% = —Ka[Depot],
d|Central CL
% = Ka[Depot] — 7[Central].

Dynamic
s



The Impact of Pumas (PharmacUtical Modeling And Simulation)

i

We have been using Pumas software for our
pharmacometric needs to support our development
decisions and regulatory submissions.

Pumas software has surpassed our expectations on its accuracy and ease of use. We are
encouraged by its capability of supporting different types of pharmacometric analyses within
one software. Pumas has emerged as our "go-to" tool for most of our analyses in recent
months. We also work with Pumas-Al on drug development consulting. We are impressed by
the quality and breadth of the experience of Pumas-Al scientists in collaborating with us on
modeling and simulation projects across our pipeline spanning investigational therapeutics
and vaccines at various stages of clinical development

Husain A. PhD (2020)

Director, Head of Clinical Pharmacology and Pharmacometrics,
Moderna Therapeutics, Inc

moderna

messenger therapeutics

Built on SciML




From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data
(covariates)

wt;
By =
SGZE
Covariate
S

Ly

g; —

Ka
CL
Vv

(9 em 1K4,k, 1
)0 75936$

0 67713

Structural Model
(pre)

= |0, (L

Ni,2

% —Ka[Depot],
d[Central] CL

Dynamic
[



From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data

(covariates)

7 _ [wt }
L Sex; \
Covariate P Ka N o
y 6= |CL| = =2
V ‘ S

Structural Model
(pre)

Idea: Parameterize the model such that the models can
be neural networks, where the weights of the neural
networks are fixed effects!

Indirect learning of unknown functions!

VAL

d[Depot]

dt

d[Central]

dt

= —Ka[Depot],

= Ka[Depot] —

Dynamic
[




DeepNLME in Practice: Data Mining for Predictive Covariates

Automate the discovery of covariate
Domain(lower=[0.1,0.0008,0.0040.1],upper=[5.0,0.5,0.9,5.0])
nlain(3) P mOde|S
XealDomain(lower=0.001, init=sqrt(0.388)) e Train convolutional neural networks to
€ NeuralDomain(FastChain(FastDense(2,50,tanh),FastDense(50,1), (x,p)->x.72)) . . .
€ NeuralDomain(FastChain(FastDense(2,50,tanh),FastDense(50,1), (x,p)->x."2)) Incorporate Images as Covarlates
« Train transformer models to utilize natural
language processing on electronic health
@pre begin records
Ka = SEX == @ 2 B[1] + n[1] : 8[4] + n[1] » Utilize automated model discovery to

@random begin n ~ MvNormal(Q) end

K = nn1([6[2],n[2]1],p1)[1] i icti
< w([em1\‘“)”[2”)[)2)“] prune genomics data to find the predictive

Ve - CLs‘:K subset
SC = CL/K/WT

end

@covariates SEX WT
@ egin conc = Central / SC end
i DepotsiCentrall
begin dv ~ @. Normal(conc, sqrt(c2_add)) end

Currently being tested on clinical trial
data




DeepNLME: Automated Construction of Patient-Specific
Pharmacological Models for Individualized Dosing

Predicted Teatied Predicted
e data — Truth — Pop average — DeepNLME pred e Data — Truth ——Pop average -—DeepNLME pred e data - Truth -——Pop average - DeepNLME pred
ID: 95d3r 1D: zgf3t ID: 88ktl ID: 6myus 1D: nizlf 1D: 9588t
s I

1.04 0 4 o 1.0 . Peee

- /'/-NN\-.., f”w“\-. ol M \ 031 M N\\\"
o . t v i ~_
g 0.0+ g 0.0 Sy g 0.0

=3
2 ID: m2lz0 ID: chxka g ID: vaoh1 ID: i5hal £ 1D: mhror ID: hgmax
© 1.0 S 10 © 10 -
.
031 - e . M«, 1 ] f.\\»f\» N\
0.0 . v — 1 v . —T 0.04 < 0.0-! , . ! : ] : , :
0 1 2 3 4 0 1 2 3 4 e T ' T T T T T Sy
0 1 2 3 a 0 1 2 3 a 0 1 2 3 4 0 1 2 3 B
Time (weeks) Time (weeks) Time (weeks)
Pred values Pred values Pred values
- ~ [
£ 10 11 r . = 5 2 Lul
s i 10 3
=05 = £
0.0 : . | 01 — v
0.0 05 10 0.0 05 10 15 Y 1 2
Model Model Model

Award by International Society of Pharmacometrics
Currently being tested in clinical trials!
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WILLIAMS

Scientific Machine Learning Gives More Realistic Results than Pure ML RACI N G

~<= Physically-Informed Machine Learning

7.324m |n(X) e*
- 7.491 m E al (lr ® o
2 B 3 ’8 ~ J — — r o o X PY
U U o ® ) ®
aCarSOG - Julia aCarSOG - Python . . X .
[ J [
| F g .’,a:ﬂf‘%‘."f‘,-"' 2 Using knowledge of the physical forms as
S \‘k part of the design of the neural networks.
T ~ New Architecture: DigitalEcho

Error vCarSOG (0.1)

Smoother, more accurate results

:: Julia Computing Confidential 0-JuliaHub


https://docs.google.com/file/d/1ohlgF8d0gGtRweNDvOqHKbTX2i9b37pe/preview

High fidelity surrogates of ocean columns for climate models

Free ocean convection, t = 0038970 s (0.45 days)

3D simulations are
high resolution but
too expensive.

Can we learn faster
models?

Ramadhan, Ali, John Marshall, Andre Souza,
Gregory LeClaire Wagner, Manvitha Ponnapati,
and Christopher Rackauckas. "Capturing
missing physics in climate model
parameterizations using neural differential
equations." arXiv preprint

arXiv:2010.12559 (2022).




Neural Networks Infused into Known Partial Differential Equations

Derive a 1D approximation to [
the 3D model s 50
a T a » Ka T é—mo | 100 ;;f
el B el 4 G £ |
ot oz \ - 0z sl
N D 46_—150 ’ -150 ,;;f
W/ T/ 8] “ e/}/@'/’
—200 ; —200
Oceananigans »f Oceananigans
o“ ° neural network / NDE
Incorporate the “convective B A N - )
. ” 50x10°° 0 50x10-9.0x10°L5x10°3.0x10~° 19.65 19.70 19.75 19.80 19.85 19.90 19.95
adjustment 0 Heat ﬁuxov%-?- (r%/is 0(% 200 Temperature T (°C)
: _ 2
0 if 0,T >0 loss(T,wT) = [NN(T) — wT]|

2 - . . .
100 m*/s if 9;T <0 Training against

datasets: onlv oka



Simulation + Machine Learning = Success

Free convection (Q = 84 W/m?, train): 0.0(i)ogays

0
-50 -50 1072
| .
o= 5
@ —100 100 T3
@ o 10
S o
N S
N
(on
S -150 ~150 -
o c 10
o] ©
9]
o LES =
Convective adjustment
—200 —200 —Neural DE 1073
Embedded
—KPP
— TKE mass flux
—250 L n n I L =250 L L L I L L 10—6 L L I
50x10° 0 50x107°1.0x10°515x10°520x10" 1965 19.70 19.75 19.80 19.85 19.90 1995 0 2 B 6 8
Haat fliv wiT fmle o) Temperature T (°C) Time (davs)

or _ 9 ( ~ _ K@_T) loss(Taw, T) = | Twn(z, t) — T(z, t)|?
o 02y 0z, Integrating the

~

W/ T/

simulator into training!



SciML: A Pervasive Ecosystem of Well-Documented

Differentiable Packages

LinearSolve.jl: Unified Linear Solver Interface Optimization.jl: Unified Optimization Interface
A(p)x=0>b minimize f(u, p)
NonlinearSolve.jl: Unified Nonlinear Solver SUbjeCt to g(u; p) <0, h(u; p) =0
Interface
f(u, p) =0 Integrals.jl: Unified Quadrature Interface
ub

DifferentialEquations.jl: Unified Interface for all

Differential Equations I f(t; p)dt
u =f(unpt) Ib
du = f(u, D, t)dt + g(u, D, t)th Unified Partial Differential Equation Interface
[
[y . Up = Uy + £ (W)
Ut = uxx.+ f(uw)
The SciML Common Interface for Julia Equation Solvers :

All are compatible with Neural Networks and Scientific Machine Learning

99-JuliaHub



SciML Docs: Comprehensive Documentation of Differentiable
Simulation

HOME MODELING v  SOLVERS -« ANALYSIS v MACHINE LEARNING ¥  DEVELOPER TOOLS ~

EQUATION SOLVERS INVERSE PROBLEMS / PDE SOLVERS THIRD-PARTY PDE SOLVERS
LinearSolve ESTIMATION MethodOfLines Trixi
NonlinearSolve SciMLSensitivity NeuralPDE Gridap
DifferentialEquations DiffEqParamEstim NeuralOperators ApproxFun
Integrals DiffEqBayes FEniCS VoronoiFVM
Optimization HighDimPDE

JumpProcesses DiffEqOperators

o Whete o Stant? Scientific Machine Learning (SciML) = Scientific Computing + Machine Learning

Getting Started

Where to Start?

Getting Started with Julia's SciML

« Want to get started running some code? Check out the Getting Started tutorials.
» What is SciML? Check out our Overview.

« Want to see some cool end-to-end examples? Check out the Extended Tutorials.

New User Tutorials

Comparison With Other Tools

Version = v0.2
« Curious about our performance claims? Check out the SciML Open Benchmarks.

99-JuliaHub
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Why is Julia leading
Scientific Machine Learning?



Productivity vs. Performance

100
mm chapel
Bl csharpcore
mm dartexe
Em erlang
B fpascal
= fsharpcore
. gcc
mm ghc
. gnat
go
= gpp
ifc
. java
m julia
- lua
node
s ocaml
= perl
B php
python3
O mmm racket
N ruby

Racket m.__ -t

sbcl

80 -

fua Smalltalk

60 -

®
Perl

Execution Time
(normalized to fastest entry)

‘\‘\\ ‘\\ swift

= ® -
Dart L L [] gmean-smallest
S =S () gmean-fastest

PHP B
Javeseript -

20 -

Chapel B o™

Compressed Code Size (normalized to smallest entry)

'
1.0

99-JuliaHub




Foundation: Fast Differential
Equation Solvers

Speed

Stability iftlab

Stochasticity
Adjoints and Inference
Parallelism

DifferentialEquations.jl is generally:
+ 50x faster than SciPy

+ 50x faster than MATLAB

+ 100x faster than R’s deSolve

Non-Stiff ODE:

Rigid Body System

Cross-Language ODE Solver Benchmark

L N“’\‘\\\

—@— DifferentialEquations.j:: Vern7
Fortran: dopri5

Sundials: CVODE
—@— MATLAB: ode45
—@— deSolve: Isoda

1072 10~
Error

8 Stiff ODEs: HIRES Chemical Reaction Network

Time (s)

Stiff 2: Hires
15 —@= Julia: Rosenbrock23 m
10" | === Julia: TRBDF2
==fe=_Julia: radau
== Hairer: rodas
1020 L | =@~ Hairer: radau
e VATLAB: 0de23s
—=>4= MATLAB: ode15s
1025 b === SciPy: LSODA
=NJ= SciPy: BDF
== SCiPy: odeint
_30 | | === deSolve: Isoda
i @ —@- sundials: CVODE
107 35
1040 b
1079 10°8 1077 10°¢ 10°° 1074 1073



New Parallelized GPU ODE Parallelism: 20x-100x Faster than

Jax and PyTorch

Lorenz Problem: Adaptive time-stepping Performance Comparison with different GPU backend

[ CUDA (Nvidia Quadro RTX 5000)

0.5 —@— GPUTsit5: Nvidia Tesla V100 = oneAP! (Intel A770)

107 O MPGOS: Nvidia Tesla V100
—@— JAX: Nvidia Tesla V100
10°9 | | —<4— GPUTsit5: Nvidia Quadro RTX 5000

-0.5
10 ™ I | EEEE AMDGPU (AMD Vega 56/64)
e [ Metal (Apple M1)
< MPGOS: Nvidia Quadro RTX 5000
107%5 F —4— JAX: Nvidia Quadro RTX 5000 1071° +
-2.0
= 10 I
100 +
10725 |
10725 | : 2
10720 + 10735 +
10725 F 10740 F
5 | 10745 F
—5.0
10 r
~3.5 |
10 =’==ﬁ='=—'1/
< < < < < ] ) \
A1 1 1 1 1 1
3 4 5 6 7

1 1 1 1 1 1 1 1 1
101 00 101.67 102.33 103.00 103,67 104.33 105.00 105.67 106 33 107‘00

Trajectories Trajectories (10")

Time (s)
Time (s)
Si

Paper coming soon...

Matches State of the Art on CUDA, but also

works with AMD, Intel, and Apple GPUs



Understanding Julia’s Performance:

Why is a JIT on Python not enough?

Function call costs

- In Julia: ~5 ns

Calling one function

In Python: ~150 ns

C
Numbers of function calls for calculating the derivative f([x,y])
Julia:
Fused to 1 function call

dz _ ar — [Bx

Ayl = dt 44 8 scalar Python:

Yi= d operations 8 function calls

L b= | 000 |l scansssscsmesncsmesecca
dt . Numba

Julia for Biologists (Nature Methods)

Theoretically inferred and real-time calculation of f([x,y])

Time of array ﬂoz;l'tiir:; g:)int 3 Time of - Inferred time .
allocation operations functioncalls Real time
Julia 8x2ns + 1x5ns = 21 ns 20 ns
Python 300 ns + 8x2ns + 8x150 ns 8 1,516 ns 1,510 ns
E::::IEIL:Jr_;\:b:a: : : :E 300 ns + 8x2ns + 1x150 ns = 466 ns 425 ns




Understanding Julia’s Development Speed:

Why are Julia packages growing faster and better tested?

ODE Solver

SDE Solver

DDE Solver

DAE Solver

Julia Scientific Computing

DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

Julia Machine Learning

DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

Normal Python

SciPy.odeint

~5 developers

N/A

N/A

N/A

PyTorch

Torchdiffeq

1 contributor with more than
one contribution

TorchSDE

2 contributors with more
than one contribution (last
commit July 2021)

N/A

N/A



Und

Why are Jul

ODE Solver

SDE Solver

DDE Solver

DAE Solver

Julia &

Differe
>100 (

alllh _
Corporate needs you to find the differences
between this picture and this picture.

Differe

>100 ¢

Differe

>100 ¢

They're the same picture.

PyTorch

Torchdiffeq

1 contributor with more than
one contribution

TorchSDE

2 contributors with more
than one contribution (last
commit July 2021)

N/A

N/A



Understanding Julia’s Package Ecosystem:

Can Composability of Features be Automatic?

julia

DifferentialEquations.jl and Measurements.jl ¢

B Usage diffeq

6 giordano

Today | was asked whether it was possible to solve in Julia differential equations involving numbers with
uncertainties. Of course the answer is yes. What | find really amazing about Julia is that the two packages don't
know anything about each other, yet they can work together without any effort. Here is an short example based
on this tutorial 23 : https://nbviewer jupyter.org/gist/giordano/e82a3959d8f64301129d64d004e10bde 99



Understanding Julia’s Package Ecosystem:

Can Composability of Features be Automatic?

using DifferentialEquations, Measurements, Plots

pyplot()
g = 9.79 £ 0.02; # Gravitational constants
L =1.00 £ 0.01; # Length of the pendulum ‘1 1. 11 1]+
Fa s 0050 F ] a Vsl TN
#Initial Conditions ‘Y A1), "N y: A
Up = [0 0, m/ 60 £ 0.01] # Initial speed and initial angle ::L {_";, (17 A4
tspan = (0.0, 6.3) | A A J L :‘ 1)
oo2sf A | | [ \ A 1
#Define the problem | f | ~ \ ;
function simplependulum(du,u,p,t) \ o \ 1 A i
de = u[2] 0.000 | \ [ \ f | |
du[1] = de i Y ] \
du[2] = -(g/L)*6 { J \ 1 1
end % | ¥ ] 1 8
0.025 } \ ? o | i | |
" I .f
#Pass to solvers ' _f ﬁ / | S
prob = ODEProblem(simplependulum, uo, tspan) F—_—f; E"__T” E'-mf_
sol = solve(prob, Tsit5(), reltol = le-6) “\ | 2 [ G \ | |/
0.050 \ 8l \LY “NAL
# Analytic solution J‘ |17 Hl = 22:2:“
U= Uo[2] .* cos.(sqrt(g / L) .* sol.t) L | L L " n T
0 1 2 3 4 5 5

plot(sol.t, getindex.(sol.u, 2), label = "Numerical")
plot!(sol.t, u, label = "Analytic")



One Language: More Performance

Goal: Learn to predict patient behavior (dynamics) from simple data
(covariates)

7. — | Wh
i Sex;, \ Requires special fitting procedures (Pumas)
Covariates Ka 6 e ik1
_ . wt; \0.75 nSex; ,
9i = CL| = 02( 70 ) 94 ei2,
V 936771,3’
Structural Model \
(pre)
d[D:;fOt] = —Ka[Depot],
1 L
w = Ka[Depot] — %[Central].

Dynamics



90-JuliaHub

Julia is Building Tools for
High-Tech Enterprise



Design

* Build realistic
physical models
with minimal
code

* Run simulations
100x faster

JuliaSim at a Glance

Discover

» Use Machine
Learning to
autocomplete
models

* Discover
missing physics

Calibrate

* Turn models into
Digital Twins

* Robust nonlinear
fitting with
automatic
differentiation

Control

* Build robust
nonlinear controls

* Deploy
Model-Predictive
Controllers (MPC)

Surrogatize

* Train neural networks
to match models

» Accelerate fast
simulations by
another 100x

All in a point-and-c

ick GUI

29-JuliaHub




Filter components...

v Components

\ Electrical
Capacitor Generate Digital Twins
Conductor o
correntSencar and calibrate models
DigitalPin
Ground
IdealOpAmp
Inductor - - - - - - . System parameters
MultiSensor
OnePort ID Lower Bound Upper Bound Nominal Tunable
K1 1 100 10
. k2 10 50 25
Tune nonlinear controllers .
k3 5 250 125 v
Deploy to embedded hardware e . . .

99-JuliaHub



Power of the Cloud: Point and Click GUI Doesn’t Sacrifice Performance

Ve > Simulate N

Simulate [
) Use
Specify plausible RERRRERRERE T3l SUrrggate surrogate
parameter range | BEpP- - . fram — 7| infuture
EESEEEREEEE simulation data analysis
\ Simulate y
\ Simulate ¥ Mix surrogate generation with cloud compute:

Train surrogates in the time of 5-8 runs!
Fully parallelized on the cloud

99-JuliaHub
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Project

10/11/2022
Brad Carman
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Instron Hydropuls Catapult Introduction ////TW

----------------------------

| s
J <:’> Advanced
- | Model |
_”HH”: Inner Loop ‘}“‘l‘w‘j ) _
8 Vi P Command i "““ )
3 e
CrashSim
prediction
Simulated Iterations
software
5 gl &
i v
(%)) (2] T
S S Physical iteations start from
4 14 o / Low RMS
lterations Iterations
Physical Iterations Improved Prediction
39-JuliaHub




Model History: >10,000x over Simulink, and Beyond ////’ W

» 10kHz
2000 2014 2017 2020
®* Inverse Model: Transfer ®* |joined Instron * Attempted to move to ® Moved to Julia
mEeE ®  Built Implicit Newton/Euler SRISEqne ®* Developed EmbeddedJulia

* Forward Model: Simulink Equation Based model in pure ®  Successfully transitioned library,
Matlab with inverse and subset model with improved speed, Modeling ToolkitComponents.jl
model generator using but required many and successfully transitioned
Symbolic Toolbox workarounds and hacks model to Modeling Toolkit.jl

® Increased model accuracy with
elimination of assumptions and
increased complexity

®*  Worked well, but...

* Slow

® Hard to update and
maintain

>1000x performance improvements
over Simulink!

Matlab2CSharp and SimScape Manager

99-JuliaHub



ARPA-E

Accelerated Simulation of Building Energy Efficiency

8,000 ODE Highly stiff
vapor-compression cycle
model

AV N ELECTRIC

Changes for the Better

Compressor Shaft Power (W)

Condenser

The Julia implementation is 6x faster than Dymola for the full

MITSUBISHI é

— Fan Speed
= cycle simulation.
e Dymolareference model: 35.3 s
C°g§£§5°’ V:\jzag‘;‘l’tf‘on ¢ Julia (as close to) equivalent model: 5.8 s
e Could be due to details such as the linear solvers, the refrigerant
property libraries, etc. More benchmarking to come.
I H Using CTESNs as surrogates improves simulation times
Fan Speed between 10x-95x over the Julia baseline. Acceleration depends
on the size of the reservoir in the CTESN. The surrogate

Relative error %

approximates 20 of the observables.

Training set size Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

Error is < 5% in all cases.

Total speedup over Dymola: 60-570x




NASA Launch Services:
Deploying Julia to Replace Simulink

Day long cluster compute analysis turned into an interactive webapp!
Youtube: Modeling Spacecraft Separation Dynamics in Julia - Jonathan Diegelman




US Air Force
Research
Laboratory

Robust Controls
Optimal control under
uncertainty

Deployment onto
embedded hardware
Nonlinear control of
unmanned vehicles
(UAVs / Drones)

INFORMATION SYSTEMS

Year of autonomy in Alaskan glaciers, flight,
Earth orbit, cislunar space and Mars

BY KERIANNE HOBBS

The Intelligent Systems Technical Committee works to advance the
application of computational problem-solving technologies and methods
to aerospace systems.

InJune, the U.S. Air Force Research Laboratory’s
Intelligent Control and Evaluation of Teams flight
test program flew an uncrewed aerial system in co-
ordination with ground systems to provide aerial
support in virtually contested environments. The
flight test team was able to demonstrate this on a
vertical takeoff and landing vehicle with both elec-
tricand conventional fuel propulsion systems onboard.
The UAS was able to plan and execute these missions
autonomously using onboard hardware. It was the
firsttime the Julia programminglanguage was flown
on the embedded hardware — algorithms were pre-
compiled ahead of time. The algorithms used to
perform the various missions involved feedback
control, mixed-integer linear programming and op-
timal control.

In November, NASA’s Cislunar Autonomous
Positioning System Technology Operations and
Navigation Experiment arrived atits near-rectilinear
halo orbit around the moon. Mission controllers re-
gained control of CAPSTONE in October after the
spacecraft began spinning in September, likely due
toastuck thrustervalve. Among the mission objectives
are demonstrating autonomous orbit determination
in cislunarspace. Using ranging measurements from
the Lunar Reconnaissance Orbiter, the CAPSTONE
spacecraft can determine its orbital position and
perform stationkeeping maneuvers withoutthe need
for Earth-based localization, paving a way for greater
numbers of more independent cislunar and deep
space probes.



JuliaSim Architecture

Discover Calibrate Control Surrogatize

ModelingToolkit.jl
Standard Library

‘ HVAC ‘ Battery ‘ Multibody

Design with ModelingToolkit.jl

29-JuliaHub



SciML Open Source Software
Organization
sciml.ai

DifferentialEquations.jl: 2x-10x Sundials, Hairer, ...

DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
ModelingToolkit.jl: 15,000x Simulink

Catalyst.jl: >100x SimBiology, gillespy, Copasi
DataDrivenDiffEq.jl: >10x pySindy

NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
NeuralOperators.jl: ~3x original papers (more optimizations
required)

ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
e DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention...

If you work in SciML and think optimized and maintained
implementations of your method would be valuable, please let us know
and we can add it to the queue.

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter




loux Hot or Not
ML & Sioux & Eindhoven

yerscough & Matthijs Cox

ASML




Keith Myerscough Matthijs Cox

Mathware Designer Physicist & Metrology Architect
TECHNOLOGIES é’; '5')

scientificcoder.com

ASM L April 21, 2023



julia

eindhoven

www.meetup.com/
julialang-eindhoven



http://www.meetup.com/
http://www.meetup.com/

Events

i) B ¥
Sep 22 | Embracing Change | HTC 50
Nov 22 | How to Julia TU/e 46
Jan 23 | Julia for Reals Sioux Labs 37
Feb '23 | Julia Bonus Meetup | Philips Stadium | 60*
May 23 | ??? ?7?7? >50

* Capacity limited!

Currently looking for new hosts!

Low cost, low key: high fun, high value!

ASML April 21, 2023




PartitionedArrays.|l / ~ \ hJuliain

Gridap.jl g% Alten production
JuliaSmoothOptimizers gridap KiteSimulators.|l

"' B0+ repositories (Francesc Verdugo)

KiteViewers.||

eScience center JuliaTrustworthyAl KiteModels.
(Abel Siqueira) {F'atnckAltm:yer‘; Amsterdam o S rt Wind
ConformalPrediction.jl 5/ he Hague Apeldorn Srnart win
LaplaceRedux.jl ®  Gorinch
Delft ‘=orinche : .
CounterfactualExplanations.jl " b >¢ IP\—/ | Kok Kroki. |l
JuliaHub | Deltares —0 Jullafiub
(Tim Besard) WfIOW-II Ghent
CUDAjl €3 | BEAST,| Brussels ‘ Gmsh.jl ASML
LLVM.jl \)l ~ EindhovenLogo.jl
oneAPLjl £ Pluto.jl 8 BIASIab @ PPTX|
Fons van der Plas F{xlnfer.jl Julia in
W o . (ReactiveMP,jl, GraphPPL.jl) prOdUCtion
Julia in the region 1" Rocket |
g2 m Forneylab

*many packages are international :)

"W eindhoven
IS

Send us a message if you want to add something to the list!






ASML makes big systems for tiny patterns

Software and algorithms play a central role
to optimize the machines and processes

ASML July 28, 2022 Page 7
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Typical ASML Algorithm Development Experience

-:- E Why does it take so long?
= How can we accelerate?

We have a proven algorithm prototype in research Then we spend years turning it into a product

-

'l

-

Excited customer Not so excitefd customer

ASML July 28, 2022 Page 8

Public



The Life of an Algorithm

&

Test on data Prototype
Algorithm

ASML July 28, 2022

Page 9
Public



The Life of an Algorithm

& .

Test on data Prototype
Algorithm

ASML July 28, 2022 Page 10

Public



The Life of an Algorithm

Idea

& B " casaren

Test on data Prototype Product \ 90|..
Algorithm Code T YN
o= e

Application(s)

ASML July 28, 2022 Page 11
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The Life of an Algorithm

ldea

( _:- \ problem %
' ' o

Test on data Prototype Product \ 90|..
Algorithm Code .1 JION

P ‘ Application(s)
Java

ASML July 28, 2022 Page 12

Public

Two language




The Life of an Algorithm

Idea

a0 g
\

L

& — B —?— ki

Test on data Prototype Product
Algorithm Code

I

Application(s)

ASML July 28, 2022 Page 13
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Technology needs for our algorithms

Prototype Production

ASML June 15, 2022

Public



Julia is designed for the challenge we have at ASML.:
fast and easy numerical computing

Fast

102

10t

Runtime relative to C

100 -

@ julia £ 4 @

ASML April 21, 2023 Page 15

Public



Julia progress at ASML

&

Find business opportunit : : : :
PP y Language evaluation Pilot project evaluations

Begin language PoC

uliacon

uliacon uliacon

Proven Julia integration
2019 2020 2021 2022 In many ASML software

o platforms
®_0 -
S — = ase o

.0 2 —
. /A
o =2 Mz 2 2. eee
Julians find each Julia@ASML Host 5-day Multiple local Begin formal
other at ASML Community bootcamps teams and cases structures

ASML July 28, 2022 Page 16
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Our discovery of Julia’s unexpected benefits

‘ Julia Package Management
N .
Julia all the way down

[ ]
ii] G C memory alignment makes life easier

ju

o Open-source Julia contributions turn you into a legend ©

A

ﬁ Julia’s deployment options are rapidly improving (with ASML funding)

ASML April 21, 2023 Page 17
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Remember: The Life of an Algorithm

ldea

( -::-

Equipment
@ —
Test on data Prototype Y Y
Algorithm Y O
=

=

ASML July 28, 2022 Page 19
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two language problem

| want high
quality
code

| want to
get stuff
done, fast

| want to
understand
the domain

| want to code
better

Only abstract
design patterns,
please

| don’t want
to code

software

developers

C

scientists

NJ

(

&
Ly

ASML July 28, 2022 Page 20
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zzzzzzzzzzz

scientists

Teach more than Julial

| e

git, TDD, REPL, math,
CIl/CD science

software

developers

222222
Public



One big happy Gaussian!

software

scientists developers

S

' julia julia jul

Public



The Life of an Algorithm

é@\- Pl We had a two language problem in ASML

Test on data Prototype Product \ 00|
Algorithm Code L

P‘ P o e

Technology needs for our algorithms

[

< {(IIA\

We found a technical solution

Julia progress at ASML

i | Q &
act evaluations

Find business opportunity y L] [] "
I ey ke We built an internal Julia ecosystem
\ Jultacon juliacon , juliacon
T T T T
9 202 a proven e ngrton
2 platiorms.
] F Y o
® 2,8 —
-] —_— 222 2 22 000
Julians find each Julia@ASML Host 5-day M
other at ASML Community bootcamps te
ASML

two language problem

e We are solving the

done, fast two culture problem code

two culture problem

ASML April 21, 2023 e e Page 24
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We make it together

Functional and software engineers work Software and functional engineers can
together to build prototype algorithms quickly deploy high quality algorithms

Excited customer Happy customer

ASML June 15, 2022 Page 25

Public
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Show your hands!

i
s Julia »
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