
Behaviour Driven Development

Time for a healthy talk

with Matt Wynne

Hans Odenthal

September 22nd, 2014

Program

18:00 Welcome

18:05 Behaviour Driven Development, part 1

19:30 Break

20:00 Behaviour Driven Development, part 2

20:55 Hot or Not?

21:00 Drinks

Behaviour Driven Development

Is it about discipline?

Are fast results not healthy?

Does green always mean good?

Matt will give

all the answers

Matt, the floor is yours …

Behaviour-Driven Development

Matt Wynne

Sioux Embedded Systems, Eindhoven

22 September 2014

!
@mattwynne

matt@cucumber.pro

mailto:matt@cucumber.pro

What is
BDD?

...and why should I care?

About Matt

• Programmer	

• Agile / lean advocate & coach	

• Author of The Cucumber Book	

• Founder of Cucumber Ltd

Stakeholders,

Customers,

Users
Programmers,

Testers

Problem
Domain

Solution
Domain

Ubiquitous
Language

Problem
Domain

Solution
Domain

Problem
Domain

Solution
Domain

Deliberate discovery

There are known knowns; there are things we
know that we know.

!

There are known unknowns; that is to say there
are things that, we now know we don't know.

!

But there are also unknown unknowns – there
are things we do not know we don't know.

ASSUME
YOU'RE

IGNORANT

Specification by
example

Ideas

Requirements

Examples

Automated Tests

Code

CONVERSATIONS

The Three Amigos

Problem
Domain

Solution
Domain

Sustainable delivery

Cost of a
change

Time

You can't have clean code
without refactoring

You can't refactor without
good automated tests

You can't stay agile
without clean code

Write a failing	

test

Make it pass

Clean
up!

Living documentation

So what is BDD?

• Using examples to drive conversations	

• Using conversations to grow the team's
domain knowledge	

• Using automated tests for the examples,
to keep total cost of ownership under
control

The floor is yours …

© Sioux 2013 | Confidential | 1

L I F E A F T E R B D D
M A T T W Y N N E , S O I U X E I N D H O V E N 2 0 1 4

A G I L E

S C R U M

S TA G E 1 :

B U R N E D T O A S T

S TA G E 1 : B U R N E D T O A S T

1. Programmers write bugs

2. Testers find bugs

3. Project managers prioritise bugs

4. Programmers fix bugs

5. GOTO 1

I ’ L L B U R N I T,
Y O U S C R A P E I T ”

“ L E T ’ S M A K E T O A S T T H E A M E R I C A N W AY:

– D E M M I N G

S TA G E 2 :

A U T O - B U R N E D T O A S T

S TA G E 2 : A U T O - B U R N E D T O A S T

1. Programmers write bugs

2. Testers write automated tests

3. Automated tests find bugs

4. Project managers prioritise bugs

5. Programmers fix bugs

6. GOTO 1

T H AT I S
N O T
B D D

E V E N I F
Y O U ’ R E
U S I N G

C U C U M B E R

C O D E T E S T F I X

B U I L D I N G

S O F T WA R E

B A C K WA R D S

B E H AV I O U R
 D R I V E N

D E V E L O P M E N T

C O D E T E S T F I X

S TA G E 3 :

T H R E E A M I G O S

S TA G E 3 : T H R E E A M I G O S

1. Programmers, Testers and BAs define behaviour together

2. Programmers write (less) bugs

3. Testers write (more) automated tests

4. Automated tests find bugs

5. Project managers prioritise bugs

6. Programmers fix bugs

7. GOTO 2

Story

Rule

Example

Question

Question
Rule

Example

Rule

Example

S TA G E 3 : T H R E E A M I G O S

1. Programmers, Testers and BAs define behaviour together

2. Programmers write (less) bugs

3. Testers write (more) automated tests

4. Automated tests find bugs

5. Project managers prioritise bugs

6. Programmers fix bugs

7. GOTO 2

W H Y D O
T E S T E R S H AV E
T O A U T O M AT E

T H E T E S T S ?

S TA G E 4 :

T E S T- F I R S T

S TA G E 4 : T E S T- F I R S T

1. Programmers, Testers and BAs define behaviour
together

2. Team automate tests for that behaviour

3. Programmers make the tests pass

4. Testers find missing scenarios

5. GOTO 2

B D D

S TA G E 5 :

D I S I L L U S I O N M E N T

S TA G E 5 : D I S I L L U S I O N M E N T

• Lots of scenarios

• Build takes ages

• Build normally broken

• Some scenarios flicker

• Poor / mixed readability

• I hate Cucumber

VA L U E O F A T E S T O V E R T I M E

-25

0

25

50

75

100

W H E N ’ S T H E
L A S T T I M E

Y O U P U S H E D A
T E S T D O W N ?

(or just deleted it altogether)

Y O U S T I L L
H AV E T O

D O
S O F T WA R E

D E S I G N

S TA G E 6 :

T R A N S C E N D E N C E

S TA G E 6 : T R A N S C E N D E N C E

• Problem domain is well understood by the team

• Solution models the problem well

• Scenarios are actually readable

• Rules over examples

• Clear architectural boundaries

• Fewer end-to-end tests

T H E E N D

Hot-or-Not?

‘Komkommertijd’?

More Hot-or-Not

Oct 22 littleBits Workshop

 Hot-or-Not, The Next Generation

Nov 10 Markus Völter & Tijs van der Storm

 MDSD: What's the right way to go?

More information: www.sioux.eu/hotornot

© Sioux 2013 | Confidential | 3

www.sioux.eu/premiumcourses

September 23 - 24, 2014

Behaviour Driven Development

Matt Wynne

November 11 - 12, 2014

Language Engineering with MPS

Markus Völter

Thank you

www.sioux.eu

hans.odenthal@sioux.eu

+31(0)40 2677100

